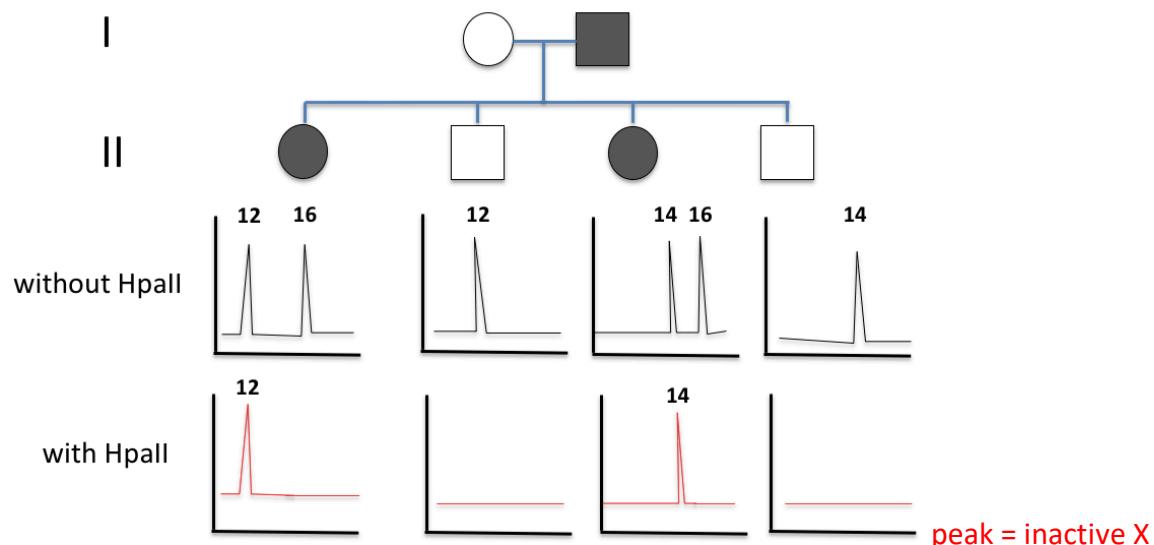


Question 5


A couple has 2 daughters and 2 sons. The father is colorblind (does not distinguish green from red), the mother distinguishes green from red.

Their 2 sons distinguish red from green but their 2 daughters are colorblind!

According to textbooks, colorblindness is transmitted by the X chromosome:

- males are colorblind when their X chromosome is mutated
- carrier females (1 X chromosome mutated) are not colorblind;
- homozygote females (2 X chromosomes mutated) are colorblind.

The family presented here is exceptional.

The HUMARA assay has been done for all 4 children.

Results without digestion by *HpaII* are given.

Genotype of the mother: 12, 14 mother gave 12 to 1st son and 14 to 2nd son

Genotype of the father: 16 father gave 16 to both daughters

Is the mother carrier for colorblindness? YES NO

daughters have inherited different X from their mother but both are affected. This make the mother very unlikely to be carrier.

Draw the most likely results of the HUMARA assay with digestion by *Hpa*II before the PCR. Explain your reasoning.

Both daughters received the mutated X from their father but they would not be affected if X inactivation is random. Let's therefore assume **non random** X inactivation: the paternal X remains always (100%) active and the maternal X is always inactivated. This is explained by a **loss-of-function** mutation of **XIC** on the paternal X chromosome; the paternal X cannot do the inactivation and the maternal X compensates by being always inactivated. The loss-of-function is not detrimental in the father (no X inactivation in men !)